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Using readily accessible 10-sulfonamido-isoborneols as regenerable, chiral auxiliaries, highly face-selective 
C-C-bond formations at C, and C, of carboxylates could be conveniently achieved. Thus, conjugated additions of 
RCu to enoates (1+2) furnished, after saponification, /?-substituted carboxylic acids 3 in 9 4 9 8 %  e.e. Similarly, 
propionates 12 yielded after deprotondtion, enolate alkylation, and reductive ester cleavage the (R)-alcohols 15 in 
78-98% e.e. The acid (+)-3e was converted to the pheromone (-)-11. 

Recently, we have reported up to 99 % 71-face-selective, BF, .OEt,-mediated con- 
jugate additions*) of organocopper reagents to chiral enoates I [2] and I1 [3]. 
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The enolate-face shielding on C,-functionalization of the neopentyl ether I11 was 
comparatively less efficient (50% d.e.) [4]. Prompted by the practical utility of 1 (R'=H) 
as a dienophile in asymmetric Diels-Alder reactions3) [6], we studied the applicability of 
the camphorsulfonamide group as a chiral 1,4-acceptor- and enolate-auxiliary. 
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Presented in part at the Autumn Meeting of the Swiss Chemical Society, Berne, October 19, 1984 
For alternative asymmetric additions of organocopper reagents see [I]. 
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Table 1. Preparation of Chiraf j3-Substituted Carboxylic Acids 3 via Conjugate Addition 1-2 

Entry R' R2 Mol-equiv. Yield [YO] e.e. % 

a Me Pr 2 98 95 (97) 
b Me Bu 2 89 97 
C Me Vinyl 10 80 98 
d Me 2-Propenyl 10 84 94 
e Pr Me 10 89 94 
f Bu Me 10 93 97 
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R2-Cu") of 2 of 3 

') i )  Addition of R2Li (4 mmol; see Footnore 6 )  to CuI . P(Bu), complex in Et,O at - 78", stirring for 30 min 
+ - 30". ii) Addition of BF, . OEt, (4 mmol) at - 78"; iii) Addition of enoate 1 (0.4-2 mmol) in Et20/ 
THF 4:1 at - 78", warming up to - 40" over 5 to 20 h. i u )  Addition of sat. aq. NH4CI/Et20, stirring of the 
Et70 phase with MCPBA (4 mmol) for 10 min and workup. 

As indicated in Scheme I and Table 1, treatment of crotonates lad4)') with 
RCu.PBu3.BF,6) at -78"C+-4O0C in Et,O/THF - 15:l furnished the 1,Cadducts 
2a-d4) in good-to-excellent yields. Saponification of 2 ( 1 ~  NaOH, in aq. EtOH, reflux) 
gave the P-substituted carboxylic acids 3a-d in 94-98 % e.e.') with virtually complete 
recovery of the crystalline auxiliary. The sense of induction at C, of 3 was readily reversed 
either by interchanging R' and R2 (see Table I ,  examples ale, b/f) or by using the 
antipodal inductor group [6]. 

The acid 3e4), obtained in 97% e.e. via the sequence 44)+54)-+3e (or in 94% e.e. from 
le) served as a key intermediate for the synthesis of the southern corn rootworm phe- 
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All new compounds were characterized by IR, 'H-NMR and MS. 
The chiral esters 1,4 and 12 were prepared [7] by heating a mixture of the chiral alcohol (1 mol-equiv.), AgCN 
(1.4 mol-equiv.) and the corresponding acid chloride (2.0 mol-equiv.) in benzene at reflux for 4 h under Ar. 
The starting reagents MeLi, PrLi, CH2=CHLi and CH,=CH(CH3)Li were prepared by metalation of Mel, 
PrBr, vinyl chloride and 2-propenyl bromide with a lithium dispersion (3 mol-equiv.) in Et,O (THF for vinyl 
chloride) using a Vibrornix. 
The enantiomeric purities of carboxylic acids 3 were determined by HPLC analyses of their (S)-a-naphthyl- 
ethylamides [81 and their absolute configurations established by chiroptic comparison. 

') 
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romone 11 [9]*) (Scheme 2 ) .  Reduction of 3e with LiAlH, (2 mol-equiv. Et,O, 0" ++20", 2 
h) followed by oxidation [l 11 of the alcohol 6,) ((COCl),, DMSO, -50 to -60", 1 h) gave 
aldehyde 7,) (80%) which on Wittig reaction (add BuLi (1 mmol) to phosphonium 
bromide 9') (1.2 mmol) in THF at -78"++20-+-78", add 7 (0.5 mmol) at -78"++20") 
yielded the olefin lo4)>. Hydrogenation of 10 under non-epimerizing conditions'0) (add 
LiAlH, (0.7 mmol) to a solution of dry CoC1, (0.7 mmol) and ketal10 (0.3 mmol) in THF 
at -78", stir at +20°, 24 h) [14] and subsequent acetal cleavage (HOAc/H,O, 4:1, 50", 30 
min) afforded the pheromone 11,) in high enantiomeric purity ([a]',"' = -1.61" (c = 4.1, 
CHC1,); [lOa]: [a]? = -1.71" (c = 8.6, CHCl,)) identified by comparison (IR, 'H-NMR 
and MS) with the published spectral data of 11 [lo]. 

The versatility of camphorsulfonamides as practical n-face-shielding elements is 
further exemplified by the asymmetric enolate alkylations") presented in Scheme 3 and 
Table 2. 
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Table 2. Asymmetric AlkylutionlReduction 12+14+15 

Entry R Purification Yield% e.e. % 
of 14 (m.p. "C) of 14 of 15 

a PhCH, crude 84 89 
1 cryst. (179-81) 61 98 

b CH,=CH-CH, crude 94 88 
C PPI crude 92 78 

a) Add a solution of PrBr in THFiHMPA (3 mol-equiv.) to enolate 13. 
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LIAIH, 
R'oH 4 32- 100% 
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Kinetically controlled deprotonation [ 161 of the propionate 12,) (LDA (1.1. mol- 
equiv.), THF, -78") followed by addition of a primary bromide to the enolate 13 gave the 
chiral a-substituted esters 14,) in 8694% yields and with 78 to 89% diastereoface 
differentiation. The diastereomeric purity of 14a was raised to 98% d.e. by simple 
crystallization. Notably, even the non-activated PrBr led to the alkylation product 14c in 
92% yield (78 YO d.e.). Reductive cleavage (LiAlH, (2 mol-equiv.), Et,O, 0-20", 30 min) of 
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For other syntheses of the pheromone 11 see [lo]. 
Bromide S4) was prepared by treatment of 1-bromo-6-heptene with Hg(OAc), + TsOH in ethylene glycol/ 
THF (30 min, +20"), followed by addition of PdCI,, LiC1, LiCO,, CuCI2 (heating at reflux for 2 h) [12]. A 
mixture of bromide 8 and PPh, was slowly warmed up to 160' and kept at this temperature for 6 h to give the 
salt 9 (90%). 
Under these conditions, (R)-citronellic acid was hydrogenated without epimerization, whereas considerable 
racemization occurred on hydrogenation with Pd/C, EtOH, H, (1 atm, 20") [13]. An analogous epimerization 
may account for the relatively low optical rotation reported for synthetic 11 [lob]. 
For other asymmetric enolate alkylations see [15]. 
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the alkylated esters 14 gave the unchanged auxiliary and the (R)-alcohols 15 in 78- 
98% e.e.’’). 

The asymmetric a - and /?-functionalizations of esters, described above, are currently 
the subject of further investigation in this laboratory. 
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’*) As expected, deprotonation of 12 with LDA in THFiHMPA 4 :  1 followed by addition of benzyl bromide and 
subsequent crystallization and reduction furnished the enantiomer of alcohol 15a in 80 % e.e. The enantiomeric 
purity of the alcohols 15 was determined by HPLC analysis [8] either of their carbamates derived from 
(R)-a-naphthylethylisocyanate (entry a, Table 2) or of the (S)-a-naphthylethylamides obtained from 15 by 
successive Jones’ oxidation and amidation (entries b, c). 


