25. Camphorsulfonamide-Shielded, Asymmetric 1,4-Additions and Enolate Alkylations; Synthesis of a Southern Corn Rootworm Pheromone

Preliminary Communication')

by **Wolfgang** Oppolzer*, **Philip** Dudfield, **Thomas Stevenson** and Thierry Godel

Département de Chimie Organique, Université de Genève, CH-1211 Genève

 $(21. X1.84)$

Using readily accessible 10-sulfonamido-isoborneols as regenerable, chiral auxiliaries, highly face-selective C-C-bond formations at C_a and C_f of carboxylates could be conveniently achieved. Thus, conjugated additions of RCu to enoates $(1\rightarrow 2)$ furnished, after saponification, β -substituted carboxylic acids 3 in 94-98% e.e. Similarly, propionates **12** yielded after deprotondtion, enolate alkylation, and reductive ester cleavage the (R)-alcohols **15** in 78-98% e.e. The acid $(+)$ -3e was converted to the pheromone $(-)$ -11.

Recently, we have reported up to 99% π -face-selective, BF₃.OEt₂-mediated conjugate additions*) of organocopper reagents to chiral enoates **I** [2] and **I1 [3].**

The enolate-face shielding on C_{α} -functionalization of the neopentyl ether **III** was comparatively less efficient (50% d.e.) [4]. Prompted by the practical utility of $1 (R'-H)$ as a dienophile in asymmetric *Diels-Alder* reactions³) [6], we studied the applicability of the camphorsulfonamide group as a chiral 1,4-acceptor- and enolate-auxiliary.

^{&#}x27;) Presented in part at the Autumn Meeting of the Swiss Chemical Society, Berne, October 19, 1984

 $\binom{2}{3}$ For alternative asymmetric additions of organocopper reagents see [I].

^{&#}x27;) Review: *[5].*

Entry	R	\mathbb{R}^2	Mol-equiv. R^2 -Cu ^a)	Yield [%] of 2	$e.e. \%$ of 3
a	Me	Pr		98	95 (97)
b	Me	Bu		89	97
c	Me	Vinyl	10	80	98
d	Me	2-Propenyl	10	84	94
e	Pr	Me	10	89	94
	Bu	Me	10	93	97

Table 1. *Preparation of Chiraf j3-Substituted Carboxylic Acids* **3** via *Conjugate Addition* **1-2**

^a) *i*) Addition of R²Li (4 mmol; see *Footnote 6*) to CuI · P(Bu)₃ complex in Et₂O at -78° , stirring for 30 min \rightarrow - 30°. *ii*) Addition of BF₃ \cdot OEt₂ (4 mmol) at - 78°; *iii*) Addition of enoate 1 (0.4-2 mmol) in Et₂O/ THF 4:1 at -78° , warming up to -40° over 5 to 20 h. *iv*) Addition of sat. aq. NH₄Cl/Et₂O, stirring of the Et₂O phase with MCPBA (4 mmol) for 10 min and workup.

As indicated in *Scheme 1* and *Table 1*, treatment of crotonates $1a-d^{4}$)⁵) with $RCu \cdot PBu_3 \cdot BF_3^{\circ}$ at $-78^{\circ}C \rightarrow -40^{\circ}C$ in Et₂O/THF ~ 15:1 furnished the 1,4-adducts **2a-d⁴)** in good-to-excellent yields. Saponification of **2** (1N NaOH, in aq. EtOH, reflux) gave the β -substituted carboxylic acids **3a–d** in 94–98% e.e.⁷) with virtually complete recovery of the crystalline auxiliary. The sense of induction at C_{β} of 3 was readily reversed either by interchanging R^1 and R^2 (see *Table 1*, examples a/e , b/f) or by using the antipodal inductor group **[6].**

The acid 3e⁴), obtained in 97% e.e. *via* the sequence 4^4 \rightarrow 5⁴ \rightarrow 3e (or in 94% e.e. from **le)** served as a key intermediate for the synthesis of the southern corn rootworm phe-

^{4,} All new compounds were characterized by IR, 'H-NMR and **MS.**

^{5,} The chiral esters **1,4** and **12** were prepared [7] by heating a mixture of the chiral alcohol (1 mol-equiv.), AgCN (1.4 mol-equiv.) and the corresponding acid chloride (2.0 mol-equiv.) in benzene at reflux for 4 h under Ar.

^{6,} The starting reagents MeLi, PrLi, CH₂=CHLi and CH₂=CH(CH₃)Li were prepared by metalation of MeI, PrBr, vinyl chloride and 2-propenyl bromide with a lithium dispersion **(3** mol-equiv.) in Et,O (THF for vinyl chloride) using a *Vibromix*.

The enantiomeric purities of carboxylic acids 3 were determined by HPLC analyses of their (S) - α -naphthylethylamides **[81** and their absolute configurations established by chiroptic comparison. ')

romone 11 [9]⁸) *(Scheme 2).* Reduction of 3e with LiAlH₄ (2 mol-equiv. Et₂O, $0^\circ \rightarrow +20^\circ$, 2 h) followed by oxidation [11] of the alcohol 6^4) ((COCl)₂, DMSO, -50 to -60° , 1 h) gave aldehyde **7,)** (80%) which on *Wittig* reaction (add BuLi (1 mmol) to phosphonium bromide 9° (1.2 mmol) in THF at $-78^{\circ} \rightarrow +20 \rightarrow -78^{\circ}$, add 7 (0.5 mmol) at $-78^{\circ} \rightarrow +20^{\circ}$) yielded the olefin 10^4). Hydrogenation of 10 under non-epimerizing conditions¹⁰) (add LiAlH₄ (0.7 mmol) to a solution of dry CoCl, (0.7 mmol) and ketal 10 (0.3 mmol) in THF at -78° , stir at $+20^\circ$, 24 h) [14] and subsequent acetal cleavage (HOAc/H₂O, 4:1, 50°, 30 min) afforded the pheromone 11⁴) in high enantiomeric purity $(|\alpha|_p^{24} = -1.61^{\circ}$ (c = 4.1, CHCl₃); [10a]: $[\alpha]_0^{24'} = -1.71^{\circ}$ (c = 8.6, CHCl₃)) identified by comparison (IR, ¹H-NMR and MS) with the published spectral data of **11** [lo].

The versatility of camphorsulfonamides as practical π -face-shielding elements is further exemplified by the asymmetric enolate alkylations") presented in *Scheme 3* and *Table* 2.

Kinetically controlled deprotonation $[16]$ of the propionate 12^4) (LDA $(1.1. \text{ mol}$ equiv.), THF, -78") followed by addition of a primary bromide to the enolate **13** gave the chiral α -substituted esters 14⁴) in 84–94% yields and with 78 to 89% diastereoface differentiation. The diastereomeric purity of 14a was raised to 98% d.e. by simple crystallization. Notably, even the non-activated PrBr led to the alkylation product 14c in 92% yield (78 *YO* d.e.). Reductive cleavage (LiAlH, (2 mol-equiv.), Et,O, 0-20", 30 min) of

^{*)} For other syntheses of the pheromone 11 see [10].

^{9,} Bromide $\mathbf{8}^4$) was prepared by treatment of 1-bromo-6-heptene with Hg(OAc)₂ + TsOH in ethylene glycol/ THF (30 min, +20°), followed by addition of PdCl₂, LiCl, LiCO₃, CuCl₂ (heating at reflux for 2 h) [12]. A mixture of bromide **8** and PPh, was slowly warmed up to 160' and kept at this temperature for 6 h to give the salt **9** (90%).

Under these conditions, (R) -citronellic acid was hydrogenated without epimerization, whereas considerable racemization occurred on hydrogenation with Pd/C, EtOH, H_2 (1 atm, 20°) [13]. An analogous epimerization may account for the relatively low optical rotation reported for synthetic **11** [lob]. $10₁$

 $\left(\frac{1}{1} \right)$ For other asymmetric enolate alkylations see [15].

the alkylated esters **14** gave the unchanged auxiliary and the (R)-alcohols **15** in 78- 98% e.e.¹²).

The asymmetric α - and β -functionalizations of esters, described above, are currently the subject of further investigation in this laboratory.

Financial support of this work by the *Swiss National Science Foundation, Sandoz Ltd,* Basel, and *Gioaudan SA,* Vernier, is gratefully acknowledged. We also thank Mr. *J. P. Saulnier,* Mr. *A. Pinto* and Mrs. *D. Climent* for NMR and **MS** measurements.

REFERENCES

- **[I]** G. H. Posner, in 'Asymmetric Synthesis', Ed. J. D. Morrison, Academic Press, New York, **1983,** Vol. **2, p.225;** F. Leyendecker, F. Jesser, D. Laucher, *Tetrahedron Lett.* **1983,24, 3513.**
- **[2]** W. Oppolzer, H. Loher, *Helv. Chim. Acta* **1981,64, 2808.**
- [3] W. Oppolzer, R. Moretti, T. Godel, A. Meunier, H. Löher, *Tetrahedron Lett.* **1983,** 24, 4971.
- **[4]** W. Oppolzer, R. Pitteloud, G. Bernardinelli, K. Baettig, *Tetrahedron Lett.* **1983,** *24,* **4975; W.** Oppolzer, in 'Selectivity - a Goal for Synthetic Efficiency', Ed. W. Bartmann and B. M. Trost, Verlag Chemie, Weinheim, **1984,** p. **137.**
- [5] W. Oppolzer, *Angew. Chem.* **1984,96, 840;** *ibid. Int. Ed.* **1984,23, 876.**
- **[6]** W. Oppolzer, **C.** Chapuis, G. Bernardinelli, *Tetrahedron Lett.* **1984,25, 5885.**
- **[7] S.** Takimoto, **J.** Inanaga, T. Katsuki, M. Yamaguchi, *Bull. Chem. SOC. Jpn.* **1976,49, 2335.**
- **[8]** W.H. Pirkle, J. R. Hauske, *J. Org. Chem.* **1977, 42,** 1839.
- **[9] P.** L. **Guss,** J. H. Tumlinson, P. E. Sonnet, J. R. Laugblin, *J. Chem. Eeol.* **1983,9, 1363.**
- [lo] a) P.E. Sonnet, *J. Org. Chem.* **1982,47, 3793;** b) **S.** Senda, K. Mori, *Agric. Biol. Chem.* **1983,47,795.**
- [I I] A. J. Mancuso, S. L. Huang, D. Swern, *J. Org. Chem.* **1978,43,2480.**
- **[I21** D. F. Hunt, G.T. Rodehoever, *Tetrahedron Lett.* **1972,3595.**
- **[I31 W.** Oppolzer, R. Moretti, Autumn Meeting of the Swiss Chemical Society, Berne, October **19, 1984.**
- **[I41** E.C. Ashby, J. J. Lin, *J. Org. Chem.* **1978,43,2567.**
- **[I51** D.A. Evans, in 'Asymmetric Synthesis', Ed. J.D. Morrisson, Academic Press, New York, **1984,** Vol. **3,** p. I.
- [I61 R. E. Ireland, R. H. Muller, A.K. Willard, *J. Am. Chem. Soe.* **1976,98,2868.**

¹²) As expected, deprotonation of **12** with LDA in THF/HMPA 4:1 followed by addition of benzyl bromide and subsequent crystallization and reduction furnished the enantiomer of alcohol **15a** in 80 % e.e. The enantiomeric purity of the alcohols **15** was determined by HPLC analysis **[8]** either of their carbamates derived from (R)-a-naphthylethylisocyanate (entry a, *Table* 2) or of the (S)-a-naphthylethylamides obtained from **15** by successive *Jones'* oxidation and amidation (entries b, c).